
02 Configure and update
This project has several steps, so don’t

worry if you just want to practise Morse code –
we’ll get to that first. If you want to complete
everything here, you’ll need to set up an internet
connection (wireless or wired) and enable I2C,
which is used to communicate with the LCD screen.
By running sudo raspi-config from the command
line, you can enable WiFi under ‘Network Options’
and I2C under ‘Interfacing Options’.

Whatever it is that you’ve decided to do, always
make sure you’ve updated the system by running
sudo apt update && sudo apt upgrade. This may
take some time; once complete, it’s important you
reboot so that I2C is properly enabled.

03 Get switched on
Let’s try to emulate the Morse key by

using a tactile switch. These widely available and
inexpensive switches make a satisfying ‘click’
when pressed (hence the name). They have four
pins – two pairs that are connected on the longer
side, so the switching is done between those with
the shorter gap. Bearing this in mind, place the
switch into the breadboard so the longer edge
follows the connected rows. Don’t worry if you
make a mistake: nothing can be damaged. Now
connect the breadboard to your Raspberry Pi’s
GPIO. Run jumper leads on each side of the switch
to the last two pins at the end (nearest the USB
ports) of the GPIO header: GND and GPIO 21.

04 Coding time
Once you’ve checked all your connections,

create a new file called morse.py in your favourite
editor and enter the code listed here. You can
also download it from magpi.cc/twitterkey if
you don’t fancy the typing. The code will listen
for changes to the button’s ‘state’ (whether it is
pressed or not) and measure the time differences

If your keyboard has you bored, why not learn Morse and then
be able to send tweets using nothing but a simple switch?

W hen Samuel Morse created his
communication system in the mid-
1800s, it revolutionised wireless

communication. The original idea was that
simple electronic pulses could be sent further
and more reliably than voice, and so the Morse
alphabet was used to describe each letter and
number as a combination of short pulses (dots)
and long pulses (dashes).

Learning Morse code is a challenge, but can be
rewarding and a lot of fun. As an introduction to
this classic way of communicating, we’re going to
build a tweeting Morse code key. We’ll learn how
to interpret input and also how you can create
more complicated projects by breaking them
down into small pieces.

01 Let’s get set up
First, select the right Raspberry Pi

model for the job. Of course, we would heartily
recommend a Raspberry Pi 4, but in fact this
project will not be too demanding on even the
oldest models, so it is great for upcycling an older
Raspberry Pi computer. In fact, it will even work
with the original Model A and B.

Start by installing the latest version of
Raspbian. We’ve no need for a graphical user
interface, so you can use Raspbian Lite if you
wish; whatever is most comfortable. We’ll be
doing everything in the command line.

PJ Evans

PJ is a writer and
software engineer
who seems to
want to make
communicating with
the outside world
as challenging
as possible.

@mrpjevans

M
A

K
ER

Tweet with Morse code

You’ll Need

> � �Small breadboard	
magpi.cc/
minibreadboard

> � �Tactile switch	
magpi.cc/switches

> � �Adafruit 16×2
LCD Keypad Kit
(optional)	
magpi.cc/keypadkit

> � �Morse key
(optional)	
magpi.cc/morsekey

> � �Twitter account
(optional)		
twitter.com

> � �Jumper wires

	� This popular display
means we can see
our Morse code
without the need for
a monitor

TUTORIAL

42 magpi.cc

	� Figure 1 The Morse code alphabet. Although it appears random, there is an
underlying structure that helps you understand and memorise the patterns

to work out whether you made a ‘dot’ or a ‘dash’.
It will then convert the pattern into a letter and
display it on the screen.

First, install these dependencies (libraries that
help us):

sudo apt install python3-pip
pip3 install gpiozero

Then run python3 morse.py.

05 Practise dots and dashes
Using the chart printed here (Figure 1),

see if you can spell your name out by clicking
the button. Use a quick press for a ‘dot’ and a
slightly longer press for a ‘dash’. Leave the button
untouched for a slightly longer time to tell the code
you’ve finished your letter. Once you’re happy
everything is working and you’ve had some fun,
CTRL+C will stop the program.

If you’re not happy with the timings, you can
adjust them to suit your ‘fist’ (the name operators
give their style of keying). You can adjust the
timings for a dot, dash, and interval between
letters by changing the timings in the variables
dot_timeout and dash_timeout at the start of the
code. Don’t be afraid to experiment.

Figure 1

This 16×2 LCD display
shows us the output
from our practice

This training key can be
added to create an authentic
Morse code experience

Tweet with Morse code 43magpi.cc

TUTORIAL

08 Version 2
It’s time for a more advanced version of our

original code. This one is a bit longer, so download
lcd_morse.py from magpi.cc/twitterkey. This
time we’re reading input from the LCD’s on-board
tactile keys, so the code needs to be a bit different.
The time measurement variables are still there.
Run it using python3 lcd_morse.py.

You should be able to key away and see the
interpreted letters appear on screen. You now have
a functioning standalone Morse code trainer.

09 Let’s tweet
We’d like to be able to send our messages

to Twitter. For security reasons, we need to create
a Twitter ‘application’ which gives the code
unique credentials for posting on our behalf.
We’re using the python-twitter library – see
magpi.cc/pytwitterinfo for an excellent tutorial
on how to set it up. You will be given four strings:
a consumer key, consumer secret, access token,
and access token secret. Enter all the values in
the equivalent variables in the first few lines of
lcd_morse_twitter.py (download the code from
magpi.cc/twitterkey). Now save the file.

10 Tweet with Morse!
Run python3 lcd_morse_twitter.py. As

before, you can construct your message by tapping
on the right-hand cursor button of the LCD
display. Your message will be displayed at the top,
and the current dots and dashes in the ‘buffer’ at
the bottom. Made a mistake? No problem: click the
left-hand cursor to delete the previous character
or the ‘up’ key to delete the entire message and
start again. When you’re happy, click on ‘Select’ to
send. Your message will be posted to your account
for all of Twitter to read.

11 Add a Morse key
Let’s take the authenticity up a notch by

adding a real Morse key. These keys are nothing
more than a simple on/off switch. That said, some
can be surprisingly expensive as they are built
using precision components to allow the operator
to go faster and faster with fewer mistakes. We’ve
selected a more affordable training key that has two
contacts that can be directly connected. To use the

06 Build the LCD
To allow us to create Morse code without

the need for a full display, we’ve selected a bright,
crisp and slightly-retro LCD screen from Adafruit.
These popular panels normally require a lot of
GPIO pins to be driven natively, but this HAT uses
an input extender so that only two pins are needed.
Better yet, it comes with five tactile switches on-
board so we can use them for input.

This LCD kit arrives unassembled, so it’s time
to get the soldering iron out. There are excellent
assembly instructions at magpi.cc/lcdkitinfo. As
always, read through them before doing anything
and take your time.

07 Set up the display
Once your display is assembled, you can

attach it to your Raspberry Pi (make sure the latter
is switched off!). Due to the close proximity of
some of the resistors, cover the top of the USB
ports and Ethernet port with insulation tape if they
are close to the PCB of the display.

Test the display is working by installing its
Python libraries:

sudo pip3 install adafruit-circuitpython-charlcd

Now create a new file called lcd.py and enter
the code from the listing here. Save it and run it
using python3 lcd.py. The display should show
your message. If it lights up but you can’t see
anything, adjust the ‘Contrast’ potentiometer
until the text appears.

import board
import busio
import adafruit_character_lcd.character_lcd_rgb_i2c as
character_lcd
lcd_columns = 16
lcd_rows = 2
i2c = busio.I2C(board.SCL, board.SDA)
lcd = character_lcd.Character_LCD_RGB_I2C(i2c,
lcd_columns, lcd_rows)
lcd.color = [100, 0, 0]
lcd.message = "Hello\nFrom MagPi"

lcd.py

001.
002.
003.

004.
005.
006.
007.

008.
009.

> Language: Python 3

Top Tip
Learning Morse

There are many
resources online
that will help
you understand
how Morse code
is structured.
Start with
learnmorsecode.info

TUTORIAL

Tweet with Morse code44 magpi.cc

existing code, solder two wires to the underneath of
the rightmost tactile switch on the LCD board and
connect them to the key using its screw terminals.
Now you can key away using the real thing!

12 Going further
Now you have the basics as Python code,

you can repurpose your tweeting Morse key for
anything you can imagine. Add a second key and
create Morse code challenge games. How about
Morse code hangman? Add timing in to see how
many letters per minute you can key. Could two
identical setups send messages to each other?

Although initially challenging, learning Morse
code is rewarding and can inspire operators to go
on to the rich and fascinating world of amateur
radio. Over to you.

Top Tip
Make a key

If you don’t fancy the expense of buying
a Morse key, you can make your own!
magpi.cc/diymorsekey

from gpiozero import Button
import time

button = Button(21) # GPIO Pin 40
dot_timeout = 0.15
dash_timeout = 1
current_letter = ""

morse = {
 ".-": "A", "-...": "B", "-.-.": "C", "-..": "D",
".": "E",
 "..-.": "F", "--.": "G", "....": "H", "..": "I",
".---": "J",
 "-.-": "K", ".-..": "L", "--": "M", "-.": "N",
"---": "O",
 ".--.": "P", "--.-": "Q", ".-.": "R", "...":
"S", "-": "T",
 "..-": "U", "...-": "V", ".--": "W", "-..-":
"X", "-.--": "Y",
 "--..": "Z", ".----": "1", "..---": "2",
"...--": "3", "....-": "4",
 ".....": "5", "-....": "6", "--...": "7",
"---..": "8", "----.": "9",
 "-----": "0"
}

while True:

 # Wait for a keypress or until a letter has been
completed
 button.wait_for_press(dash_timeout)

morse.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.	

011.	

012.	

013.	

014.	

015.	

016.	

017.
018.
019.
020.
021.
022.	

023.

> Language: Python 3

 # If we've timed out and there's been previous
keypresses, show the letter
 if button.is_pressed is False and
len(current_letter) > 0:
 print("\nMorse: " + current_letter)
 if current_letter in morse:
 print("Letter: " + morse[current_letter])
 else:
 print("Not recognised")
 current_letter = ""

 elif button.is_pressed:

 # The key has been pressed, work out if it's
a dot or a dash
 button_down_time = time.time()
 button.wait_for_release()
 button_up_time = time.time()
 button_down_length = button_up_time -
button_down_time

 # Was it a dot or dash?
 if button_down_length > dot_timeout:
 print('-', end='', flush=True)
 current_letter += '-'
 else:
 print('.', end='', flush=True)
 current_letter += '.'

 time.sleep(0.1)

024.
025.	

026.	

027.
028.
029.
030.
031.
032.
033.
034.
035.
036.	

037.
038.
039.
040.	

041.
042.
043.
044.
045.
046.
047.
048.
049.
050.

magpi.cc/twitterkey

DOWNLOAD
THE FULL CODE:

TUTORIAL

Tweet with Morse code 45magpi.cc

