160m Quick Study

Receiving Antenna Size vs Performance v02

Jukka OH6LI

• 160m Full Size GP as reference

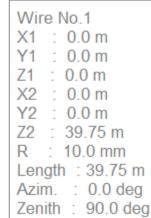
• Task:

Quick study to tell how a simple and affordable receiving antenna gives performance over the Full Size GP

How to measure the performance

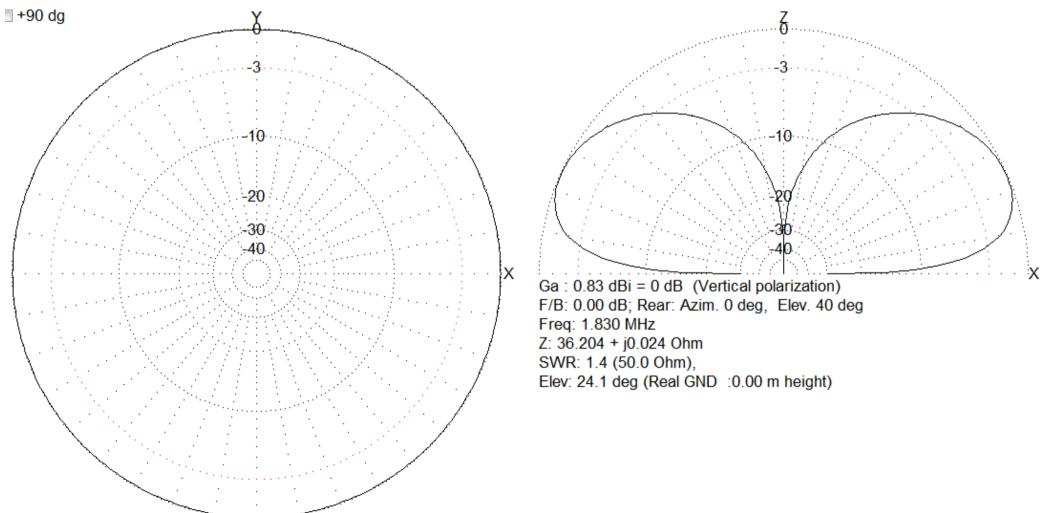
 New receiving Antenna Performance Measure: Minimum Discernible Signal

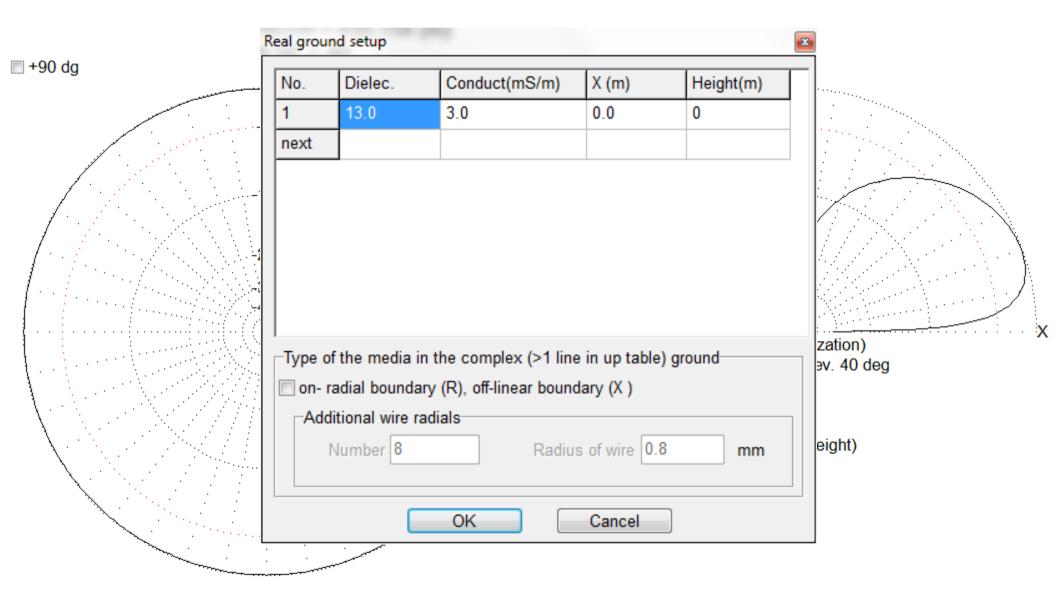
- New receiving Antenna Performance Measure: Minimum Discernible Signal
 - Excel tool: Dan AC6LA
 - Algorithm: Jukka OH6LI
 - Ideas, clarifications: Markku OH2RA


 New receiving Antenna Performance Measure: Minimum Discernible Signal

• Noise Margin as secondary measurable

- New receiving Antenna Performance Measure: Minimum Discernible Signal
- Calculation based on: Antenna peak gain Antenna average gain QTH noise level - source ITU P.372-13, Figure 10 Feed system losses RX noise figure


- Feed at ground level, apex 39.75m
- Wire diameter 20mm copper
- Real ground


X

• Feed at ground level, apex 39.75m, W=20Cu

Wire No.1 X1 : 0.0 m Y1 : 0.0 m Z1 : 0.0 m X2 : 0.0 m Y2 : 0.0 m Z2 : 39.75 m R : 10.0 mm Length : 39.75 m Azim. : 0.0 deg Zenith : 90.0 deg

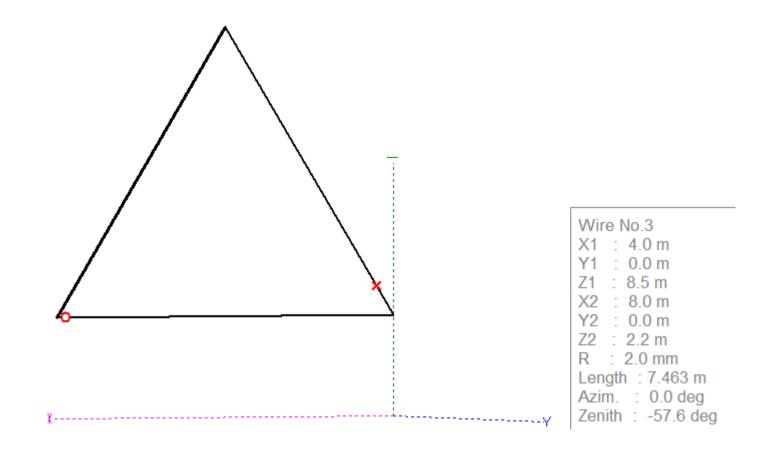
Other Parameters

- First amplifier Noise Figure 6dB
 - W7IUV preamp now measured, NF below 6dB
- Matching & Feed Losses 2dB

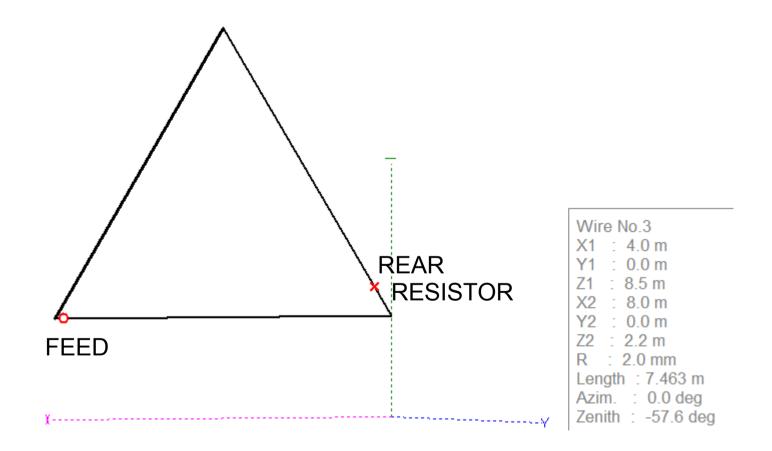
- QTH Noise specified above -204dBW
 - Fa defined in ITU P.372 document
 - 64dB for Residential QTH on 160m
 - 46dB for Quiet Rural QTH on 160m

- Residential, QTH Noise 64dB
- MDS -142,1dBW
- Noise Margin 47,8dB
- Quiet Rural, QTH Noise 46dB
- MDS -160,1dBW
- Noise Margin 29,8dB

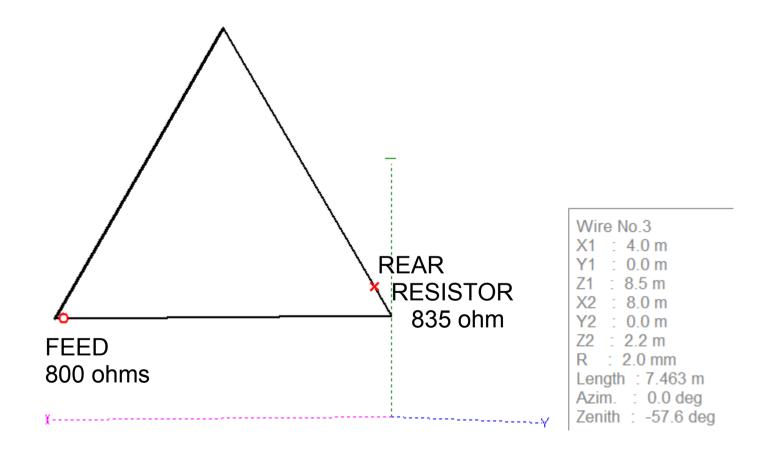
- Residential, QTH Noise 64dB
- MDS -142,1dBW
- Noise Margin 47,8dB
- Quiet Rural, QTH Noise 46dB
- MDS -160,1dBW
- Noise Margin 29,8dB

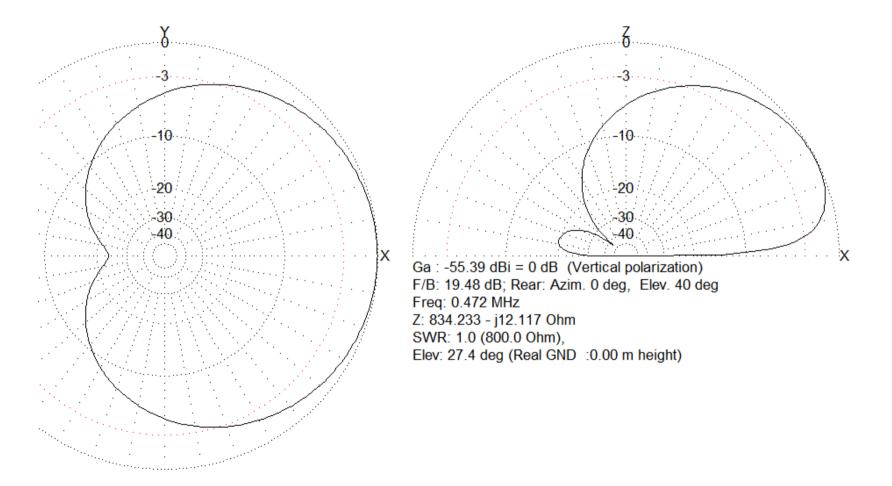

- Residential, QTH Noise 64dB
- MDS -142,1dBW
- Noise Margin 47,8dB
- Quiet Rural, QTH Noise 46dB
- MDS -160,1dBW exactly 64-46dB=18dB better
- Noise Margin 29,8dB

Comparison antenna: Modified K6SE / FO0AAA


- Triangle shape
- Length 8.0m
- Bottom wire at 2.2m, apex 8.5m
- Wire 4mm diameter copper
- Rear resistor 5% above the rear corner to optimize pattern, value 810-850 ohms

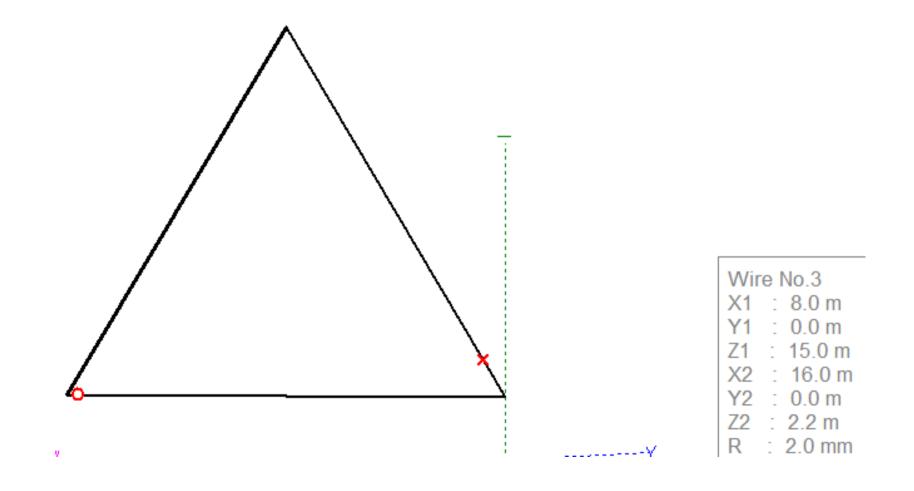
Lobster antenna


• L=8.0m, bottom wire at 2.2m, apex 8.5m, W=4Cu

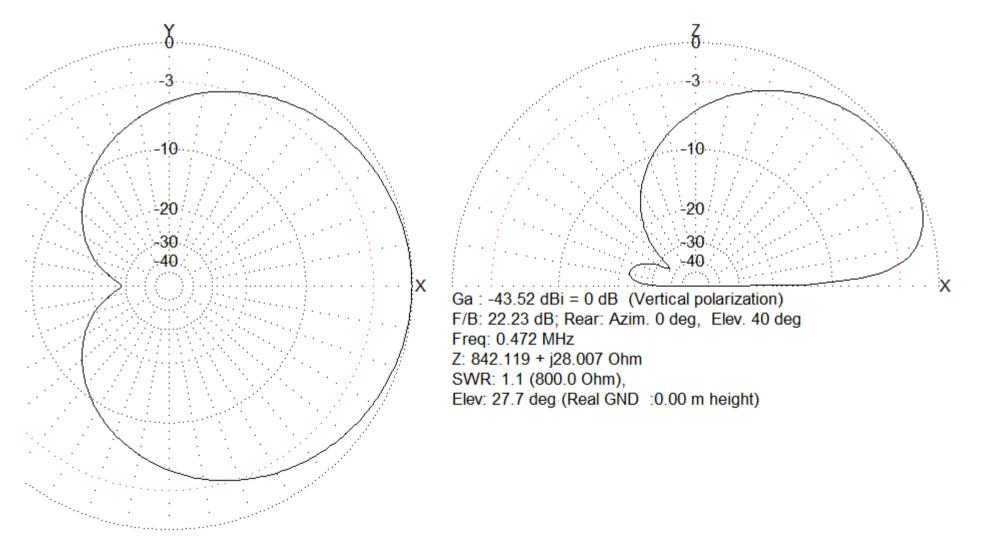

• L=8.0m, bottom wire at 2.2m, apex 8.5m, W=4Cu

• L=8.0m, bottom wire at 2.2m, apex 8.5m, W=4Cu

L=8.0m, bottom wire at 2.2m, apex 8.5m, W=4Cu



- L=8.0m, bottom wire at 2.2m, apex 8.5m, W=4Cu
- Residential QTH Noise 64dB
- MDS -144,6dBW
- Noise Margin 11,0dB
- Rural, QTH Noise 46dB
- MDS -157,3dBW
- Noise Margin -7,0dB


- L=8.0m, bottom wire at 2.2m, apex 8.5m, W=4Cu
- Residential QTH Noise 64dB
- MDS -144,6dBW GP MDS -142,1dBW
- Noise Margin 11,0dB strong positive margin
- Rural, QTH Noise 60dB
- MDS -157,3dBW GP MDS -160,1dBW
- Noise Margin -7,0dB not perfect for quiet QTH

- L=8.0m, bottom wire at 2.2m, apex 8.5m, W=4Cu
- Residential QTH Noise 64dB
- MDS -144,6dBW GP MDS -142,1dBW
- Noise Margin 11,0dB strong positive margin Excellent for suburban locations
- Rural, QTH Noise 60dB
- MDS -157,3dBW GP MDS -160,1dBW
- Noise Margin -7,0dB not perfect for quiet QTH

• L=16m, bottom wire at 2.2m, apex 15m, W=4Cu

• L=16m, bottom wire at 2.2m, apex 15m, W=4Cu

- L=16m, bottom wire at 2.2m, apex 15m, W=4Cu
- Residential, QTH Noise 64dB
- MDS -144,7dBW
- Noise Margin 22,9dB
- Rural, QTH Noise 46dB
- MDS -162,0dBW
- Noise Margin 4,9dB

- L=16m, bottom wire at 2.2m, apex 15m, W=4Cu
- Residential, QTH Noise 64dB
- MDS -144,7dBW 0,1dB above Basic Lobster
- Noise Margin 22,9dB
- Rural, QTH Noise 46dB
- MDS -162,0dBW GP MDS -160,1dBW
- Noise Margin 4,9dB basic Lobster was negative

- L=16m, bottom wire at 2.2m, apex 15m, W=4Cu
- Residential, QTH Noise 64dB
- MDS -144,7dBW 0,1dB above Basic Lobster
- Noise Margin 22,9dB unnecessarily high
- Rural, QTH Noise 46dB
- MDS -162,0dBW GP MDS -160,1dBW
- Noise Margin 4,9dB basic Lobster was negative

- L=16m, bottom wire at 2.2m, apex 15m, W=4Cu
- Residential, QTH Noise 64dB
- MDS -144,7dBW 0,1dB above Basic Lobster
- Noise Margin 22,9dB unnecessarily high
- Rural, QTH Noise 46dB
- MDS -162,0dBW GP MDS -160,1dBW
- Noise Margin 4,9dB basic Lobster was negative Good for rural locations

Results summary

- GP MDS is -133.0 / -125.0 dBW
- Lobster MDS ranges -135.7 / -127.5 dBW

Results summary

- GP MDS is -160,1 / -142,1 dBW
- Lobster MDS ranges -157,3 / -144,6 dBW
- Double Size Lobster -162,0 / -144,7 dBW

- Design Target achieved Lobster wins over GP at affordable size & cost For Quiet Rural QTH, Double Size Lobster
- Performance difference 1,9 2,6dB

Findings

- A receiving antenna length 16m is enough on 160m band to provide better reception than a Full Size GP – at most QTHs, most of the time
- Increasing the antenna size will not bring automatical improvement in MDS capability
- Common mode and signal leaking related issues may be improved by increasing the antenna size bigger than Double Size Lobster
- At locations with minimal ambient noise a Triple Size Lobster is not needed - 2,5x is enough

More Information

- A receiving antenna "LIRA" with 33m length wins Double Size Lobster
 - Beyond the scope of this Quick Study

- Antenna details and simulation models available from Jukka OH6LI
 - Also LIRA design details available for those wanting to pursue for the best reception capability

Excel Workbook

- Excel workbook to analyze MDS and Noise Margin available
- Also Leaking Index for directional antenna pattern comparisons

							Rear	Rear		Using LI	Plus LI	QTH						
	3D Max			Average	Average	Direc-	Hemi	Hemi	Leaking	Rear	Front	Noise	Noise					
	Gain	At	At	Gain	Gain	tivity	Avg	MSL	Index	Azim	Elev	Level	Margin	MDS	Length	Width	Height	
Antenna pattern file name	(dBi)	Azim	Elev	(ratio)	(dB)	(dB)	Gain	(dB)	(%)	Range	Range	(dB)	(dB)	(dBW)	(m)	(m)	(m)	Antenna pattern file name
01 GP 160m.csv	0,83	0°	24°	0,37684	-4,24	5,07	-4,24	5,07	96,8	80°-280°	80°-90°	64	47,8	-142,1	40	40	39,75	01 GP 160m.csv
02 BasicLobster 160m.csv	-33,21	0°	34°	0,00008	-41,00	7,79	-45,97	12,76	77,6	80°-280°	80°-90°	64	11,0	-144,6	10	1	7,5	02 BasicLobster 160m.csv
03 DoubleSizeLobster 160m.csv	-21,45	0°	35°	0,00123	-29,12	7,67	-33,87	12,42	78,9	80°-280°	80°-90°	64	22,9	-144,7	18	1	11	03 DoubleSizeLobster 160m.csv
04 TripleSizeLobster 160m.csv	-14,09	0°	35°	0,00698	-21,56	7,47	-26,04	11,95	79,9	80°-280°	80°-90°	64	30,4	-144,5	26	1,5	22	04 TripleSizeLobster 160m.csv
05 LIRA L22 H7.2 160m.csv	-35,81	0°	27°	0,00003	-45,50	9,69	-55,06	19,25	46,3	80°-280°	80°-90°	64	6,5	-146,2	24	1	7	05 LIRA L22 H7.2 160m.csv
06 LIRA L33 H10.0 160m.csv	-25,20	0°	28°	0,00033	-34,84	9,64	-44,95	19,75	42,0	80°-280°	80°-90°	64	17,2	-146,6	33	1	10	06 LIRA L33 H10.0 160m.csv
01 GP 160m.csv	0,83	0°	24°	0,37684	-4,24	5,07	-4,24	5,07	96,8	80°-280°	80°-90°	46	29,8	-160,1	40	40	39,75	01 GP 160m.csv
02 BasicLobster 160m.csv	-33,21	0°	34°	0,00008	-41,00	7,79	-45,97	12,76	77,6	80°-280°	80°-90°	46	-7,0	-157,3	10	1	7,5	02 BasicLobster 160m.csv
03 DoubleSizeLobster 160m.csv	-21,45	0°	35°	0,00123	-29,12	7,67	-33,87	12,42	78,9	80°-280°	80°-90°	46	4,9	-162,0	18	1	11	03 DoubleSizeLobster 160m.csv
04 TripleSizeLobster 160m.csv	-14,09	0°	35°	0,00698	-21,56	7,47	-26,04	11,95	79,9	80°-280°	80°-90°	46	12,4	-162,3	26	1,5	22	04 TripleSizeLobster 160m.csv
05 LIRA L22 H7.2 160m.csv	-35,81	0°	27°	0,00003	-45,50	9,69	-55,06	19,25	46,3	80°-280°	80°-90°	46	-11,5	-155,6	24	1	7	05 LIRA L22 H7.2 160m.csv
06 LIRA L33 H10.0 160m.csv	-25,20	0°	28°	0,00033	-34,84	9,64	-44,95	19,75	42,0	80°-280°	80°-90°	46	-0,8	-162,6	33	1	10	06 LIRA L33 H10.0 160m.csv